
[Faculty of Science
Information and Computing Sciences]

Software Configuration Management

Jurriaan Hage
e-mail: jur@cs.uu.nl

homepage: http://www.cs.uu.nl/people/jur/
Slides stolen from Eelco Dolstra

Department of Information and Computing Sciences, Universiteit Utrecht

September 26, 2008



[Faculty of Science
Information and Computing Sciences]

2

Overview

Software configuration management

Scenarios

Software configuration management areas



[Faculty of Science
Information and Computing Sciences]

3

1. Software configuration management



[Faculty of Science
Information and Computing Sciences]

4

What SCM isn’t §1

What it’s not about:

I How to configure your printer driver for duplex printing in
Windows XP.

I How to configure Doom 3 to use anti-aliasing.



[Faculty of Science
Information and Computing Sciences]

5

Configuration management §1

I Webster: configuration, noun, from Latin verb configurare,
“relative arrangement of parts or elements”.

I General CM: “the discipline of controlling the evolution of
complex systems” (Tichy).

I Necessary for complex systems since:
I Design evolves.
I System families (or product lines).



[Faculty of Science
Information and Computing Sciences]

6

Software product lines/application families 1 §1

I Software systems are configured/specialized versions of a
generic system.

I Exploit similarities, configure the differences

I The generic system is
I usually tailored for a specific domain and
I has a fixed architecture

I The same application for multiple platforms.
I Examples: internet banking applications.

I Quinity, Enterprise Resource Planning systems (SAP)

I ERP (deployment time configuration): fixed number of
freedoms of configuration.

I If you need more, make sure you bring some money.

I Quinity (design time configuration)
I Customer never notices that the system was not built from

scratch.



[Faculty of Science
Information and Computing Sciences]

7

Software product lines/application families 2 §1

I Specializing to a software product line gives many
advantages:

I stability
I speed of development due to less work
I speed of development due to familiarity

I Of course, there should be enough demand for the type of
application.

I Rather like a monolithic, very specialized application
framework.



[Faculty of Science
Information and Computing Sciences]

8

Software configuration management §1

I SCM is CM applied to software systems.

I Required since software products aren’t atomic,
non-evolving, non-composable entities.

I Difference to general CM:
I Software evolves much faster.
I Potentially more automatable.



[Faculty of Science
Information and Computing Sciences]

9

2. Scenarios



[Faculty of Science
Information and Computing Sciences]

10

Scenario: multiple developers, multiple workspaces
§2

I Alice and Bob are working on some software product.

I They stay synchronised by emailing each other their
changes.

I Problems:
I Manual labour. Which files change?
I What if they forget a file? Loss of synchronisation.
I What if they both changed the same file?



[Faculty of Science
Information and Computing Sciences]

11

Scenario: multiple developers, single workspace §2

I Alice and Bob now use a network drive and work on the
same files simultaneously.

I No longer any sync issues, but. . .
I Problems:

I What if they are editing the same file at the same time?
I Alice is making big changes to support component X. Bob

is working on application Y that uses X. But while Alice is
changing X, Bob is stuck because his stuff doesn’t compile.



[Faculty of Science
Information and Computing Sciences]

12

Scenario: supporting old releases §2

I Alice and Bob have released version 2.0 to the customers
and start working on version 3.0.

I A bug is discovered in 2.0 which necessitates a version 2.1.

I So now there is development on two branches: the 2.x
stable branch, and 3.x development branch.

I Problem:
I They fix the bug relative to 2.0 and release 2.1. . .
I But forget to port the fix to the ongoing 3.0 development.
I Thus, a regression occurs.



[Faculty of Science
Information and Computing Sciences]

13

Scenario: supporting old releases §2

Like the previous one, but:

I The source code for 2.0 has disappeared.

Or:

I The compiler has disappeared.

Or:

I The people who know how to build the system have
disappeared.

Or:

I The hardware necessary to build the system has
disappeared.



[Faculty of Science
Information and Computing Sciences]

13

Scenario: supporting old releases §2

Like the previous one, but:

I The source code for 2.0 has disappeared.

Or:

I The compiler has disappeared.

Or:

I The people who know how to build the system have
disappeared.

Or:

I The hardware necessary to build the system has
disappeared.



[Faculty of Science
Information and Computing Sciences]

13

Scenario: supporting old releases §2

Like the previous one, but:

I The source code for 2.0 has disappeared.

Or:

I The compiler has disappeared.

Or:

I The people who know how to build the system have
disappeared.

Or:

I The hardware necessary to build the system has
disappeared.



[Faculty of Science
Information and Computing Sciences]

13

Scenario: supporting old releases §2

Like the previous one, but:

I The source code for 2.0 has disappeared.

Or:

I The compiler has disappeared.

Or:

I The people who know how to build the system have
disappeared.

Or:

I The hardware necessary to build the system has
disappeared.



[Faculty of Science
Information and Computing Sciences]

14

Real example: Skylab reactivation mission §2

I Attempt to keep Skylab in space for a longer period (it was
slowly falling back to earth due to atmospheric drag).

I This required uploading new control software.

I “When IBM began to make preparations to modify the
software, it discovered that there was almost nothing with
which to work. The carefully constructed tools used in the
original software effort were dispersed beyond recall, and,
worse yet, the last of the source code for the flight
programs had been deleted just weeks beforehand. This
meant that changes to the software would have to be hand
coded in hexadecimal, as the assembler could not be
used—a risky venture in terms of ensuring accuracy.
Eventually it became necessary to repunch the 2,516 cards
of a listing of the most recent flight program, and IBM
hired a subcontractor for the purpose.”



[Faculty of Science
Information and Computing Sciences]

15

Real example: Skylab reactivation mission (cont’d)
§2

I “What happened after the manned Skylab program
demonstrated the need for foresight and proper attention
to storage of mission-critical materials until any possibility
of their use had gone away. [...] The destruction of the
flight tapes and source code for the software by unknown
parties was inexcusable. A single high-density disk pack
could have held all relevant material.” (NASA, Computers
in Spaceflight—The NASA Experience)



[Faculty of Science
Information and Computing Sciences]

16

Scenario: component integration §2

I To prevent all the sync overhead, every team member
works on just one component of the system.

I At the end (just before the deadline), they put everything
together (big-bang integration).

I Nothing works—expected and actual interfaces are subtly
different from the design documents, many bugs surface
only now in the complete system, and so on.



[Faculty of Science
Information and Computing Sciences]

17

Scenario: manual building §2

I For very small systems it may be doable to build the
system by hand.

$ javac *.java

I Doesn’t work anymore when we have
I many build steps,
I different languages,
I many source files,
I lots of build time configuration options.

$ gcc -g -DDEBUG=1 -c foo.c
$ yacc parser.y
$ gcc -g -DDEBUG=1 -c parser.c
$ gcc -o app foo.o parser.o



[Faculty of Science
Information and Computing Sciences]

18

Scenario: building is slow §2

I So we could just make a build script.

I What if we have a system consisting of 10,000s of source
files and tens of millions of lines of code? ⇒ slow.

I And developers should rebuild/test the system after every
change!

I Result: developers will skip testing.



[Faculty of Science
Information and Computing Sciences]

19

Scenario: incomplete rebuilds §2

I Solution: just rebuild the things that “changed”.

I If foo.c changes, rebuild only foo.o and app.

I But if bar.h changes, and foo.c includes that file...

I And what if the compiler changes?

I Dependencies are very tricky.

I If done manually: easy to forget things ⇒ binaries not
consistent with sources.

I If done automatically: is the dependency information
correct?



[Faculty of Science
Information and Computing Sciences]

20

Scenario: packaging §2

I The product is done and you want to release/ship it.

I Should be installed automatically.

I But at installation time, it turns out that you forgot to add
a required file to the distribution.



[Faculty of Science
Information and Computing Sciences]

21

Scenario: DLL Hell §2

I The user installed your application, but the installation
breaks some other application because you overwrote some
common DLL file in C:/Windows/System32 with an
incompatible version.



[Faculty of Science
Information and Computing Sciences]

22

Scenario: missing components §2

I The user tries to run the application, but gets an error
message about foo.dll missing.

I Problem: your application required third-party foo.dll,
but you forgot to ensure that it’s installed.

I Testing didn’t reveal this since foo.dll happened to be
present on your machine.



[Faculty of Science
Information and Computing Sciences]

23

Example: Firefox dependencies §2

freetype-2.1.5

firefox-0.8

gtk+-2.4.0

fontconfig-2.2.2

pango-1.4.0

libXft-2.1.6

xlib-1.0

libXt-0.1.4-cvs

glibc-2.3.2

libX11-6.2.1

libIDL-0.8.2

glib-2.4.0

libXrender-0.8.4

atk-1.6.0

libSM-6.0.2

libXau-0.1.1

libICE-6.3.2 glib-2.2.3

perl-5.8.3

gnused-4.0.7 binutils-2.14coreutils-5.0

libtiff-3.5.7libpng-1.2.5

libjpeg-6b

libXext-6.4.2

zlib-1.2.1

expat-1.95.7

xproto-6.6.1

linux-headers-2.4.25-i386

libXtrans-0.1 xextensions-1.0.1

renderext-0.8



[Faculty of Science
Information and Computing Sciences]

24

Scenario: uninstallation §2

I The user wants to get rid of the application. How to do
that?

I Manually delete files: dangerous.

I Automatically delete files: need complete manifest of files
belonging to the application.

I What about shared files?



[Faculty of Science
Information and Computing Sciences]

25

3. Software configuration management areas



[Faculty of Science
Information and Computing Sciences]

26

SCM areas §3

I Support the evolution of source code ⇒
version management (a.k.a. source revision control).

I Control building of derivative artifacts ⇒
build management.

I Manage transmission and installation of software ⇒
software deployment / package management.

I Support (continuous integration) testing and releasing ⇒
continuous build systems (a.k.a. build farms).

Related:

I Issue tracking systems.



[Faculty of Science
Information and Computing Sciences]

27

Version management §3

Goals:

I Provide safe storage for source code (a repository).
I Store history:

I Source code at all (or many) points in time.
I Reason for the change, and who made the change.

I Allow parallel lines of development.
I Allow flow of changes between developers and branches.

I Merging of changes.
I Resolve conflicts.

I Provide identification.
I Give names to releases/branches.



[Faculty of Science
Information and Computing Sciences]

28

Build Management §3

Goals:

I Build derivates (e.g., binaries) automatically from sources.

I Efficiency: prevent unnecessary rebuilds.

I Correctness: do rebuild if necessary.
I Support variability

I Multiple platforms, debug on/off,...



[Faculty of Science
Information and Computing Sciences]

29

Deployment §3

Goals:

I Get software from the producer site to the consumer site.

I Manage installations (install, upgrade, uninstall).

I Correctness: ensure that software works the same at
producer and consumer sites.

I Deal with dependencies / interferences.



[Faculty of Science
Information and Computing Sciences]

30

Continuous builds §3

Integration of version management and automated builds (and
maybe deployment).

Goals:

I Verify after every source change that the system builds /
passes automatic tests.

I Portability testing: build on multiple platforms.

I Report build errors.

I Link back to version management (⇒ “blame” facility).

I Maybe build and/or deploy packages automatically.



[Faculty of Science
Information and Computing Sciences]

31

Bug tracking §3

I Should be integrated with version management system.

I E.g., so we can query: “is bug X fixed in branch Y?”



[Faculty of Science
Information and Computing Sciences]

32

More information §3

I Paper: Walter Tichy, Software Configuration Management
Overview.

I Book: Stephen P. Berczuk, Software Configuration
Management Patterns: Effective Teamwork, Practical
Integration.


	Software configuration management
	Scenarios
	Software configuration management areas

